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Abstract. A system described by a quadratic Hamilranian with a two-photon absorption 
and emission term is coupled to heat bath, described bq either a non-Hermitian or a 
Hermitian noise operator. The dissipation kernel is memor) dependent. A set of dispersion 
relations for the bath distribution functions is obtained. For the near-Markovian case an 
explicit solution of the bath distribution function is obtained perturbatively. The K M S  

condition on the two-point carrelators is obtained at the equilibrium limit. The equilibrium 
system number density is also evaluated. 

1. Introduction 

An open quantum system with a small number of degrees of freedom interacting weakly 
and  linearly with a dissipative environment described by a heat bath representing an  
infinite number of degrees of freedom is of longstanding interest (Ford et a/ 1965). 
The full Hamiltonian equations, after a series of plausible approximations (Haken 
1970) generate the quantum analogues of the classical Langevin equations. A quantum 
Langevin for a harmonic oscillator interacting with a heat bath was recently studied 
by Streater (1982) and Hasegawa et a/ (1985). The key consistency requirement adopted 
by these authors is the validity of the canonical commutation relation for the harmonic 
oscillator dynamical variables for all time t > 0. This necessitates a quantum treatment 
of the heat bath because otherwise the harmonic oscillator variables would violate the 
canonical commutation relation. Streater (1982) adopted a model for the heat bath 
comprising of the positive frequency modes alone; and  in the Markovian case charac- 
terised by an  instantaneous damping kernel, he determined the frequency distribution 
of the heat bath oscillators. He also dynamically established the K M S  periodicity 
conditions (Kubo 1957, Martin and Schwinger 1959) for the Green functions in the 
equilibrium limit. A shortcoming in the above construction is that the density of the 
heat bath frequency modes depend on an arbitrary indeterminate function. To remedy 
this deficiency, Hasegawa er al (1985) introduced a quantum heat bath of Hermitian 
character. Exploiting the consistency conditions mentioned earlier, they expressed the 
heat bath spectrum density as an universal linear function of the mode frequency 
multiplied by a factor depending on the system parameters. 

We consider a two-fold variation of this problem. Instead of a harmonic oscillator, 
we consider a general quadratic system coupled to heat bath. This is of relevance in 
the context of the radiation processes involving a two-photon emission or absorption 
(Yuen 1976). The system Hamiltonian is given by 

H , = h w a  a + i h ( D a  ' + D * u ' )  
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where D is the coupling constant for the two-photon emission process. It is well 
known that, using a linear Bogoliubov transformation, the Hamiltonian (1.1) can be 
diagonalised 

U,= h R A  A - { h ( w  -RI  (1.2) 

where 

The system bath coupling is, howeker, inequivalent in two alternate pictures. We 
describe the coupling in terms of the coordinate a,  in contrast to the transformed 
coordinate A. We will comment on this later. We assume (Chakrabarti and  Vasudevan 
1988) a non-Markovian arbitrarily memory-dependent dissipation kernel. We consider 
both non-Hermitean and Hermitian noise. In  these cases it is possible to determine 
the bath frequency distribution as a perturbation series, where the leading term 
corresponds to a Markovian limit. A complete set of consistency conditions for the 
bath frequency distribution function can be established non-perturbatively. The K M S  

periodicity condition can be derived in the equilibrium limit. We also obtain the 
equilibrium number density of the system. 

In the non-Hermitian case the system bath coupling is taken to be in the 'random 
wave approximation' ( R W A )  scheme in that it neglects the rapidly oscillating terms in 
the interaction. When viewed in terms of the transformed coordinate A, the coupling 
becomes of the general linear type and its R W A  character is lost. This marks an  essential 
difference between the present problem and the previous works (Streater 1982, 
Chakrabarti and Vasudevan 1988). The distribution function for the heat bath 
frequency modes depend on an arbitrary undetermined function for the whole 
frequency range. In the untraviolet region the distribution function asymptotically 
reaches a constant value. This property is markedly different from that of the simple 
harmonic oscillator system, where the bath distribution function is constant except in 
the low-frequency region, where it depends on an  indeterminate function. 

On the other hand, for a heat bath described by a Hermitian noise operator, the 
frequency distribution is a universal linear function apart from a system-dependent 
multiplying factor. Here the presence of the D term introduces a simple scale factor 
and  the linear behaviour of the bath mode distribution remains unaltered. This can 
be easily understood. A Bogoliubov transformation along with a simple rescaling of 
the bath noise operator reduces the Langevin equation for this case to that of a harmonic 
oscillator, studied by Hasegawa et a1 (1985). I n  the Markovian limit our distribution 
agrees with their result except for a scaling factor. Here our contribution is a perturba- 
tive solution of the bath frequency distribution in the presence of a memory-dependent 
dissipation kernel. 

The plan of the paper is as follows. Sections 2 and 3 contain our description of 
the quadratic system in the presence of a non-Hermitian and  a Hermitian bath, 
respectively. In  section 4 we establish the K M S  periodicity condition for both types of 
baths. We also find the number density of the system in the equilibrium limit. We 
conclude in section 5 .  
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2. Non-Hermitian heat bath 

The Langevin equation for a general quadratic system in the presence of a dissipation 
kernel y ( t )  is 

a(  t )  +iwa(  t )  + i D a - (  t ) +  y (  t - s ) a ( s )  d s  = b( t )  (2.1) J(: 
where b ( r )  is taken to be a non-Hermitian bath annihilation operator coupled to the 
system in the RWA mechanism. An alternative starting point is to consider the Langevin 
equation for the Bogoliubov transformed operator A( t ) :  

A( t )  + iQA( t )  + lo' y (  t - s ) A ( s )  d s  = p b (  t )  + vbT( t ) .  

The heat bath noise operator in (2.2) reflects a system bath interaction Hamiltonian 
containing terms of the type A'b- and  its Hermitian adjoint. These terms spoil the 
R W A  structure of the interaction Hamiltonian. Here we will retain the description (2.1) 
of the system and solve for the density of the bath frequency modes. 

The bath noise operator b( t )  has an  expansion in terms of the positive frequency 
modes (Streater 1982): 

b ( t )  = d k f ( k ) b ( k )  e-". I,' (2.3) 

The operators b( k )  satisfy the canonical commutation relation 

[b (k ) ,  b ' ( k ' ) ] = 6 ( k - k ' ) .  (2.4) 
Considering the Laplace transform of (2.1) and  its Hermitian adjoint, we obtain 

where 

S + i w  + j ( s )  
= (S- iw + j * ( s )  

i D *  

and the Laplace transform F( s)  of a construct F (  t )  is defined as 

(2.5) 

(2.7) 

A typical memory-dependent kernel with a strength y and a timescale for memory T is 

A t )  = ( Y / T ) @ ( ~ )  exp(-tl .r) .  (2.8) 
For this choice (2.5) may be easily inverted to obtain a ( ? ) :  

a ( t ) = a ( t ) a ( 0 ) + p ( t ) a T ( O ) +  a ( r - s ) b ( s )  d s +  P ( t - s ) b ' ( s )  d s  (2.9) 

where the admittance kernels a ( ? )  and p (  t )  are given by 
Jo' lo' 

a ( t ) = C c ,  exp(- iQ, t - r , r )  (2.10) 
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The boundary conditions are 

c c , = 1  d,  = 0. 
I , 

(2.12) 

Close to the Markovian limit, i.e. in the regime yr<< 1, the constants of the admittance 
kernels take the form 

o+n D 
212 

d ,  =- ( I  + y r )  c, --- (1 + YT? 212 

n, - R ( l +  y r )  

c 2 - - - -  Y r  d2= -2.n y r  

r ,  = ? ( I +  Y T )  

o+R D 
212 

1 n:- - R y r  rz =--  y( i  + y r )  
T 

(2.13) 

n7 = -0, r? = r ,  
w - I 2  D 

d , = -  y r  
212 YT c, = - 

212 

n, = -12, r4 = r2 
The requirement to be satisfied is 

[ a ( t ) ,  a ( t ) ]  = 1 for t > O  (2.14) 

where [a(O) ,  a ( O ) ]  = 1. Substituting (2.9) and its conjugate in (2.141, we obtain 

b(t) i ' - iP(r ) l '+ jx d k p ( k ) ( / a ( k ,  f ) l ? - l P ( - k ,  t ) 1 2 ) =  1 (2.15) 

where 

(2.16) 

(2.17) 

(2.18) 

Considering the limit ?+E, which is to be understood as t > > y - ' ,  we obtain the 
time-independent part of (2.1 5 ) :  

-d ,d? (k+O,  - i r , ) - ' ( k+ i l ,+ i r , ) - I ]  = 1. 

The time-dependent part of (2.15) yields 

2 {(c,c? - d,dF) exp[ -i(12, - R,)t  - (r, + I-,)?] 
', 

(2.19) 
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where 

F p ( R , ,  O,; r!? rJ;  ‘1 

=lox d k p ( k ) ( k - R , + i r , ) - ’ ( k - 0 ,  -ir,)-’ 
x {exp[-i(0, -0,)t - (r, +r,)t] -exp[i(k - R , ) t  -r,t] 

-exp[-i(k -R, ) t  -r/ t]}.  

After a contour integration, (2.20) takes the form 

C{c,c:Fp(n,, 0,; r,,  r,) -d ,d?F3-R, ,  -0,; r , ,  r,)} 
I, 

xexp[- i (0 ,  - O , ) t - ( r , + r l ) r ] = O  

where 

F p ( n , ,  ‘ J ;  r l ,  r]) 
= 1 + 1: d k p ( k )  ( k - 0, + ir,)-’ ( k - 0, - iTJ ) - I  

(2.21) 

(2.22) 

-2 Ti[ R, - 0 ,  + i (  yf + I-, ) ] - I  [ p (0, - ir , ) + p (0, + ir, )]. (2.23) 

Equating the coefficients of exp[-i(0, - 0 , ) t  -(r, +r,)t] on both sides of (2.22) leads 
to a set of dispersion relations for all i and j :  

(2.24) 

The dispersion relation (2.24) is valid for an arbitrary memory-dependent kernel and 
does not depend on the approximation scheme adopted in the remaining part of this 
section. 

An explicit solution for p ( k )  is also possible in the limit yr<< 1 .  For this purpose, 
we use the expansion 

(2.25) 

We also assume N I (  k < 0) = 0 for all 1. We substitute the expansion (2.25) into the 
time-independent relation (2.19) and equate the terms O( l )  and O( YT) separately. 
Terms O(1) yield 

C,~:F,(R,, 0,; r,, r,) - d , d p = ; ( - a , ,  -0,; r,,  r,) = 0. 

p(k)  = No( k )  + y“,( k) +o( ~ 7 ) ’ .  

Iox d k N o ( k ) (  R+[(k-R,)’+T:]-’+ R-[(k+R,)’+Tf]-’)= 1 (2.26) 

where 

( U  *a)’- ID(’ 
4R2 

R, = 

Equating the terms O ( y r ) ,  we obtain 

= -2+  R ,  J dk No( k)[(k - R I  +iT,)-’(k -R2  - iT,)-’+cc] 
0 

(2.27) 

+ R-  J dk  No( k ) [ (  k +  0,  + i T , ) - ’ ( k  +a, - iy2)-’ + cc]. (2.28) 
0 
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On substitution of (2 .25)  in (2 .20)  we get after equating terms O(1) and O( 77) separately, 

5,' d k No( k )  { R+ [ ( k - R , ) 2  + I-:]-' cos( k - R ) t 

+ R _ [ (  k+R,)'+ ri1-I cos( k + Rl) t}  ( 2 . 2 9 )  

= exp( -rl t )  

and 

jox dk N , ( k ) { R + [ ( k - R , ) 2 + r : ] - '  cos(k-R,)t  

+ R-[ (k  +ill)'+ r;]-' cos(k + R,)t} 

( 2 . 3 0 )  

where 

@(RI,  Q,; rl, r.2) 

= - 1  + R+ dk N o ( k ) [ ( k  -a, + iTI)- ' (k - R 2  --irJ' +cc] loW 
+ R- los dk No(k ) [ (  k + R I  +i r , ) - ' (  k +  0, -XJ' + cc]. ( 2 . 3 1 )  

To obtain ( 2 . 2 9 )  and ( 2 . 3 0 ) ,  we exploited ( 2 . 2 6 )  and ( 2 . 2 8 ) ,  respectively. We also 
carried out a contour integration to obtain the right-hand side of ( 2 . 3 0 )  in the present 
form. The coefficients of the terms -exp(-T,t) on the RHS of (2 .30)  as can be seen 
by making a perturbative expansion of the dissipation relations ( 2 . 2 4 ) .  This is crucial 
and allows us to determine N , ( k )  using the inverse cosine transform. Equation ( 2 . 3 0 )  
reduces to 

loz dk N , ( k ) { R + [ ( k  - RI) '+ ri1-l cos(k -R,) t  

+ R-[( k+a,)'+ I-;]-'  cos(k+R,) t}  

= ~ P ( R , , n , , r l , r 2 ) e x p ( - r l t ) .  (2 .32)  

To obtain an explicit solution for the leading-order (Markovian) distribution 
function, we use the standard cosine transform for exp(-r , t )  in ( 2 . 2 9 ) .  This leads to 

(2 .33)  R+[ No( k + R ) + No( - k + n )] + R- No( k - R ) = 2 r  ,/ T. 

The general solution of ( 2 . 3 3 )  is 

0-n 
T w + R  ~ , ( 2 n R ,  + x ) l n z O = -  

( 2 . 3 4 )  
~ o ~ ~ ~ n + ~ ~ ~ l + x ~ ~ . , o = ~ [ ~ - ( - ) n + ~ ]  0-n -(-) w-R uo(RI-x)  

w + n  w + n  
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where 0 s  x 0, and the arbitrary positive function a o ( x )  has the property 

a()( k s 0 )  = 0 

r ,  2 0  

2r, 2~ 

adRI1  =- - 
57 w+R 

a, , (2R,)  =- - 
x w+R' 

(2 .35 )  

An essential difference from the case of the harmonic oscillator coupled to the bath 
in the R W A  mechanism (Streater 1982) is that here the distribution function depends 
on the arbitrary function a J x )  for all values of k. In the large-k (>>RI)  limit, we 
obtain from (2 .34)  

21' , 
N ( , ( k  >>RI) =-. (2.36) 

7T 

The first-order distribution function NI(  k )  is obtained in an analogous way. We enlist 

N , ( 2 n R I  +.x)l,, 

where the arbitrary function a, (x )  is not necessarily positive and  has the property 

a,( k s 0) = 0 

(2.38)  

The present expansion scheme with a perturbation parameter YT can be developed 
up  to an  arbitrary order with the lowest order representing a Markovian process. At 
each order an  undetermined function ( a o ( x ) ,  (T,(x), etc) has to be introduced to 
describe the bath distribution function. 

3. Hermitian bath 

A heat bath described by a Hermitian noise operator b( t )  was considered by Hasegawa 
et a1 (1985). An analysis of the general quadratic system coupled to a Hermitian bath 
in the presence of an  arbitrarily memory-dependent kernel may be developed parallel 
to section 2 .  We will discuss the difference between the two cases, The Langevin 
equations for the quadratic system are 

ci( t )  + iwa( t )  + iDa ( 1 )  + 

u ' ( t )  - i w a  ( t )  - i D * a (  t )  + 

y (  r - s )a (  s) = b(  1 )  (3.1) 

(3.2) 

I: 
y (  t - s)a  (s) = b( t ) .  
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In terms of the Bogoliubov transformed operator A(  t ) ,  the Langevin equations (3.1) 
and  (3.2) may be rephrased as 

A(t)+iOA(r)+{of y ( t - s ) A ( s )  d s  = ( p  + v)b ( t ) .  (3.3) 

Apart from the rescaling factor ( p  + v )  for the noise operator, (3.3) differs from the 
Langevin equation considered by Hasegawa er a1 (1985) by the presence of the 
memory-dependent kernel y ( r ) .  So our results in the present section may be viewed 
as an extension of the results of Hasegawa et a1 (1985) for an  arbitrarily memory- 
dependent kernel y ( t ) .  We also derive a complete set of dispersion relations for 
the heat bath frequency mode distribution function. To maintain a uniformity with 
section 2, however, we consider the Langevin equation (3.1) and  (3.2) rather 
than (3.3). 

For the dissipation kernel y ( t )  we can readily write the solution of (3.1): 

a ( t )  = (Y ( t ) a  (0) + p ( r )a - (O)  + [ (Y ( t  - s )  + p (  t - s ) ] b ( s )  ds. (3.4) I: 
Using the Fourier expansion of the Hermitian noise operator 

d k [ f ( k ) b ( k )  e- ' "+f*(k)b  ( k )  e'"] (3.5) 

Hasegawa er a1 (1985) derived the commutation relation 

[ b ( r ) ,  b ( s ) l =  J x  dk  sgn(k )p (k )  exp[-ik(t -s)l .  
- -x 

Following these authors, we define 

where p^( k )  is not a positive definite quantity. The key requirement for the commutation 
relation (2.14) leads to 

l a ( t ) ~ ' - I p ( f ) ~ 2 +  dkp^(k)lcu(k, t ) + p ( k ,  t ) l ' =  1. (3.8) 

The time-independent equation is 
X I dkp^(k) x (c, + d , ) (  c: + d : ) ( k  -0, +iT,  ) - ' ( k  -0, -ir,)-' = 1. 
- x  '1 

The time-dependent equation has the form 
(C,C? - d,d ,*)  exp[- i (0 ,  -0,)t  -(r, +r,)t.] 

iJ +x (c, + d , ) ( c T +  d : ) G ; ( Q , ,  R,;  T i ,  r,; t )  = 0 
,, 

where 

G,-(R,, a,; r,,  r,; 1 )  

= d k  p*( k ) ( k  -0, +ir, 1 -  ' ( k  -0, -ir,)-' 
--x 

x {exp[-i(0, - 0 , ) t  - (r, + r , ) t ]  - exp[i( k -0,)r -r,t] 
-exp[- i (k-R, ) t - r , t ]} .  

(3.9) 

(3.10) 

(3.11) 
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By performing a contour integration and equating terms with an identical time 
behaviour, we write a set of dispersion relations: 

(3.12) C,C; - d,d: + (c, + d,)(c,* + d,*)~,-(n,, a,; r,, r,) = o 
where 

G,-(Rl, 0,; rl,  r,, 
X 

= 1 dkp^(k)(k-R,+iT,)- ' (k-R, -ir,)-' 
-X 

- 2 ri(n, - a, + i (  r, + r,))-'[ p*( a, - ir, ) + p^( 0, + ir,)]. (3.13) 

To solve explicitly for p^( k )  we adopt a perturbative expansion in y r  

~ ( k )  = f i o ( k ) + y T f i l ( k ) + ~ ~ y T ) 2  (3.14) 

and proceed exactly as before. We only quote our results here. The density functions 
No( k )  and N , ( k )  statisfy the following integral equations: 

w + R e ( D )  
R 

dkfio(k)[(k-R,)2+r:]- '  cos(k-n , ) t  =exp(-r , t )  (3.15) 

+ Re(D) IX dk fil( k ) [  ( k  - ri]-' cos( k - i l l )?  n --3c 

where 

(3.16) 

x [ ( k  - a, + i r1)- ' (k  -a2 - i r2) - '  + cc].  (3.17) 

The solutions of (3.15) and (3.16) are 

f i o ( k )  = ( T , R / r R , ) ( w + R e ( D ) ) - ' k  (3.18) 

and 

~ ( k )  = (rln/7Tnl)(W+Re(D))-'cCI(nl, a,; r l ,  r2w. (3.19) 

The corresponding p ( k )  may be read directly from (2.7) and is a linear function of 
Ikl alone. 

4. Green functions 

The equilibrium two-point Green function for the system dynamical variables satisfies 
the K M S  periodicity condition. We establish the K M S  periodicity condition for an 
arbitrary memory-dependent dissipation kernel y (  t ) .  The heat bath may be described 
by either a non-Hermitian or a Hermitian noise. In this section we do not use the 
expansion scheme in the parameter y r  developed earlier. 

The ensemble average for the bath frequency modes is given by 

( b ' ( k ) b ( k ) ) =  n ( k ) 6 ( k - k ' )  (4.1) 
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where 

n ( k )  = (exp(pk)  - l)- ' .  (4.2) 

In (4.1) and hereafter ( ) will denote the average over the bath degrees of freedom. 

function 
In the non-Hermitian noise case, using (2.9) we determine the system correlation 

( a i (  T ) a (  T +  t ) )  

= a*( T ) a (  T +  t ) (a ' (O)a(O)) 

+a*( T ) P (  T +  t)(a'(O)a'(O)) 

d k  ( n ( k ) +  l ) p ( k )  e'"( d r l  /3*(r1) eikTi)(  loT*' d r ?  P ( T J  e-'"I>. 
+ I 

(4.3) 

As T + CO, the terms depending on the initial system variables vanish and  the factors 
in the parenthesis converge to their corresponding Fourier transforms: such as 

Using these results, we obtain 

G'( 1 )  = (aLa,( t ) )  

=lox dkp(k ) [ l a (k ) l ' n (k )  e- '"+1/3(-k)l2(n(k)+l) elh']. (4.5) 

G'( t )  = (a,( r)a:) = J dkp(k) [ la (k)12(  n ( k ) +  1) e - ikr  + IP( -k) /*n(k)  e'"]. (4.6) 
0 

In the limit T + w ,  the Green functions G ' ( y )  and G'(r) are translation invariant. 
From (4.2), (4.5), (4.6) we obtain 

G'(t-ip)= G'(t)  (4.7) 

which is the K M S  condition. 

an  arbitrary time T :  
The expectation value of the number operator for the system may be obtained at 
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At T + m the number operator becomes independent of the initial density matrix of 
the system and  is 

N x =  (a;a,)= d k p ( k ) [ l c u ( k ) ( 2 n ( k ) + 1 P ( - k ) l ’ ( n ( k ) +  1 ) l .  

Restricting ourselves to a Markovian limit (YT’O), we obtain from (4.4), (2.10), (2.11) 
and (2.13) 

(4.9) i: 
w + n  - w - n  - 

/cu(k)/2= ( - 2R ) ’ [ ( k  - n)’+ y’1-I + (x)’[( k + n)’+ y’1-l 

-- I D / ’  [ ( k ’ - n ’ ) + y ’ ] [ ( k + n ) l + y 2 ] - l [ ( k - R ) ’ + y 2 ] - ’  

-- I D ’ ’  [k’-R’+ ?’I[( k + n)’+ y ’ ] - ’ [ (  k -fl)2+ ? ’ ] - I .  

2R2 

1Dl’ ID/’ lP(-k)l’ = - [ ( k  -n)’+ y2]-’ $7 [ ( k  +a)‘+ y’1-I 
412’ 4 0 -  

2R’ 

(4.10) 

(4.11) 

Substituting (4.10) and (4.1 1 )  into (4.9) and passing to the additional limit y 
obtain 

0, we 

w + n  w-n 
n(R)+- ( n ( R ) +  1 ) .  N, =- 

2R 2R 

In deriving (4.12) we made use of the identity 

(4.12) 

14.13) 

Notice that at  the Markovian and  weak dissipation limit, the system number density 
is independent of the undetermined function cr0(x). The equilibrium number density 
(4.12) corresponds to the Bose distribution for the Bogoliubov transformed operator 

We just quote 

(4.14) 

(4.15) 

This again leads to the K M S  condition. The equilibrium system number density is 

N, = 1‘ dkp( lk l ) [O(k )n (k )+  O ( - k ) ( n i l k l ) +  1)1Ip(k)+ v(k)12. 

The Markovian ( ~ 7 - 0 )  and small dissipation limit again leads to the result (4.12). 

(4.16) 
- -x 

5. Conclusion 

In this paper we described the approach to a thermal equilibrium of a general quadratic 
system coupled to a heat bath, characterised either by a non-Hermitian or  a Hermitian 
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noise operator. This dissipation kernel is taken to be memory dependent. A set of 
dispersion relations for the bath distribution function is derived. These dispersion 
relations may be viewed as fluctuation dissipation theorems relating the dissipation 
kernel y (  t )  to the frequency mode distribution p (  k )  characterising the noise operator. 
Close to the Markovian limit the distribution function is solved explicitly in a perturba- 
tive way. For a non-Hermitian noise operator our result for the bath frequency mode 
distribution function p (  k ) ,  when restricted to the case D - 0 and YT - 0, agrees with 
that of Streater (1982). In  the case of a Hermitian noise operator, however, p ( k )  - k. 
This agrees with the previous results (Hasegawa er a1 1985, de  Smedt er a i  1988), 
which are special cases of the present example. 

The K M S  condition on the two-point functions is obtained in the limit when T is 
much greater than a typical timescale of the dissipation kernel. This describes the 
system achieving a thermal equilibrium with the heat bath at a temperature @ - I ,  and  
may be viewed as a check on the validity of the framework of the quantum Langevin 
equation. The equilibrium number density is also obtained. 

References 

Chakrabarti R and Vasudevan R 1988 J .  P h n .  A: Math. Gen. 21 1457 
de Smedt P, Durr D, Lebowitz J L and Liverani C 1988 Commun. Math. Phys. 120 195 
Ford G W, Kac M and Mazur P 1965 J. Math. Phys. 6 504 
Haken H 1970 Handbuch Physik 25 43 
Hasegawa H, Klauder J R and Lakshmanan M 1985 J .  Phys. A: Math. Gen. 18 L123 
Kubo R 1957 J. Ph.ys. Soc. Japan 12 571 
Martin P C and Schwinger J 1959 Phjx  Rec. 115 1342 
Streater R F 1982 J. Phys. A: Math. Gen. 15 1477 
Yuen H P 1976 Phvs. Rec. A 13 2226 


